Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.725
Filtrar
1.
J Ethnopharmacol ; 330: 118224, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642623

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sophorae tonkinensis Radix et Rhizoma (STR) is an extensively applied traditional Chinese medicine (TCM) in southwest China. However, its clinical application is relatively limited due to its hepatotoxicity effects. AIM OF THE STUDY: To understand the material foundation and liver injury mechanism of STR. MATERIALS AND METHODS: Chemical compositions in STR and its prototypes in mice were profiled by ultra-performance liquid chromatography coupled quadrupole-time of flight mass spectrometry (UPLC-Q/TOF MS). STR-induced liver injury (SILI) was comprehensively evaluated by STR-treated mice mode. The histopathologic and biochemical analyses were performed to evaluate liver injury levels. Subsequently, network pharmacology and multi-omics were used to analyze the potential mechanism of SILI in vivo. And the target genes were further verified by Western blot. RESULTS: A total of 152 compounds were identified or tentatively characterized in STR, including 29 alkaloids, 21 organic acids, 75 flavonoids, 1 quinone, and 26 other types. Among them, 19 components were presented in STR-medicated serum. The histopathologic and biochemical analysis revealed that hepatic injury occurred after 4 weeks of intragastric administration of STR. Network pharmacology analysis revealed that IL6, TNF, STAT3, etc. were the main core targets, and the bile secretion might play a key role in SILI. The metabolic pathways such as taurine and hypotaurine metabolism, purine metabolism, and vitamin B6 metabolism were identified in the STR exposed groups. Among them, taurine, hypotaurine, hypoxanthine, pyridoxal, and 4-pyridoxate were selected based on their high impact value and potential biological function in the process of liver injury post STR treatment. CONCLUSIONS: The mechanism and material foundation of SILI were revealed and profiled by a multi-omics strategy combined with network pharmacology and chemical profiling. Meanwhile, new insights were taken into understand the pathological mechanism of SILI.

2.
Environ Sci Technol ; 58(15): 6552-6563, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38571383

RESUMO

Extracellular polymeric substances (EPS) ubiquitously encapsulate microbes and play crucial roles in various environmental processes. However, understanding their complex interactions with dynamic bacterial behaviors, especially during the disinfection process, remains very limited. In this work, we investigated the impact of EPS on bacterial disinfection kinetics by developing a permanent EPS removal strategy. We genetically disrupted the synthesis of exopolysaccharides, the structural components of EPS, in Pseudomonas aeruginosa, a well-known EPS-producing opportunistic pathogen found in diverse environments, creating an EPS-deficient strain. This method ensured a lasting absence of EPS while maintaining bacterial integrity and viability, allowing for real-time in situ investigations of the roles of EPS in disinfection. Our findings indicate that removing EPS from bacteria substantially lowered their susceptibility threshold to disinfectants such as ozone, chloramine B, and free chlorine. This removal also substantially accelerated disinfection kinetics, shortened the resistance time, and increased disinfection efficiency, thereby enhancing the overall bactericidal effect. The absence of EPS was found to enhance bacterial motility and increase bacterial cell vulnerability to disinfectants, resulting in greater membrane damage and intensified reactive oxygen species (ROS) production upon exposure to disinfectants. These insights highlight the central role of EPS in bacterial defenses and offer promising implications for developing more effective disinfection strategies.


Assuntos
Desinfetantes , Desinfecção , Desinfecção/métodos , Matriz Extracelular de Substâncias Poliméricas , Desinfetantes/farmacologia , Cloro/farmacologia , Cinética
3.
JACS Au ; 4(3): 1219-1228, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559724

RESUMO

Borocarbonitride (BCN), in a mesoscopic asymmetric state, is regarded as a promising photocatalyst for artificial photosynthesis. However, BCN materials reported in the literature primarily consist of symmetric N-[B]3 units, which generate highly spatial coupled electron-hole pairs upon irradiation, thus kinetically suppressing the solar-to-chemical conversion efficiency. Here, we propose a facile and fast weak-field electro-flash strategy, with which structural symmetry breaking is introduced on key nitrogen sites. As-obtained double-substituted BCN (ds-BCN) possesses high-concentration asymmetric [B]2-N-C coordination, which displays a highly separated electron-hole state and broad visible-light harvesting, as well as provides electron-rich N sites for O2 affinity. Thereby, ds-BCN delivers an apparent quantum yield of 7.6% at 400 nm and a solar-to-chemical conversion efficiency of 0.3% for selective 2e-reduction of O2 to H2O2, over 4-fold higher than that of the traditional calcined BCN analogue and superior to the metal-free C3N4-based photocatalysts reported so far. The weak-field electro-flash method and as-induced catalytic site symmetry-breaking methodologically provide a new method for the fast and low-cost fabrication of efficient nonmetallic catalysts toward solar-to-chemical conversions.

4.
Plant Cell Physiol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38578169

RESUMO

Due to their sessile lifestyle, plants need to optimize their growth in order to adapt to ever-changing environments. Plants receive stimuli from the environment and convert them into cellular responses. Brassinosteroids (BRs), as growth-promoting steroid hormones, play a significant role in the tradeoff between growth and environmental responses. Here, we provide a comprehensive summary for understanding the crosstalk between BR and various environmental stresses, including water availability, temperature fluctuations, salinization, nutrient deficiencies and diseases. We also highlight the bottlenecks that need to be addressed in future studies. Ultimately, we suppose to improve plant environmental adaptability and crop yield by excavating natural BR mutants or modifying BR signaling and its targets.

5.
New Phytol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563391

RESUMO

Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild-type (WT) plants under As treatment. Additionally, loss-of-function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.

6.
Reg Anesth Pain Med ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658058

RESUMO

BACKGROUND: The dural puncture epidural technique has been shown in some studies to improve the onset and quality of the initiation of labor analgesia compared with the standard epidural technique. However, few studies have investigated whether this technique confers advantages during the maintenance of analgesia. This randomized double-blinded controlled study compared dural puncture epidural analgesia with standard epidural analgesia when analgesia was maintained using programmed intermittent epidural boluses. METHODS: 400 parturients requesting epidural labor analgesia were randomized to have analgesia initiated with a test dose of 3 mL lidocaine 1.5% with epinephrine 15 µg, followed by 12 mL ropivacaine 0.15% mixed with sufentanil 0.5 µg/mL using the dural puncture epidural or the standard epidural technique. After confirming satisfactory analgesia, analgesia was maintained with ropivacaine 0.1% and sufentanil 0.5 µg/mL via programmed intermittent epidural boluses (fixed volume 8 mL, intervals 40 min). We compared local anesthetic consumption, pain scores, obstetric and neonatal outcomes and patient satisfaction. RESULTS: A total of 339 patients completed the study and had data analyzed. There were no differences between the dural puncture epidural and standard epidural groups in ropivacaine consumption (mean difference -0.724 mg, 95% CI of difference -1.450 to 0.001 mg, p=0.051), pain scores, time to first programmed intermittent epidural bolus, the number of programmed intermittent epidural boluses, the number of manual epidural boluses, obstetric outcome or neonatal outcome. Patient satisfaction scores were statistically higher in the dural puncture epidural group but the absolute difference in scores was small. CONCLUSION: Our findings suggest that when labor analgesia is maintained using the programmed intermittent epidural bolus method, there is no significant advantage to initiating analgesia using the dural puncture epidural compared with the standard epidural technique. TRIAL REGISTRATION NUMBER: ChiCTR2200062349.

7.
J Adv Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609050

RESUMO

INTRODUCTION: It is estimated that 90% of hyperuricemia cases are attributed to the inability to excrete uric acid (UA). The two main organs in charge of excreting UA are the kidney (70%) and intestine (30%). Previous studies have reported that punicalagin (PU) could protect against kidney and intestinal damages, which makes it a potential candidate for alleviating hyperuricemia. However, the effects and deeper action mechanisms of PU for managing hyperuricemia are still unknown. OBJECTIVE: To investigate the effect and action mechanisms of PU for ameliorating hyperuricemia. METHODS: The effects and action mechanisms of PU on hyperuricemia were assessed using a hyperuricemia mice model. Phenotypic parameters, metabolomics analysis, and 16S rRNA sequencing were applied to explore the effect and fundamental action mechanisms inside the kidney and intestine of PU for improving hyperuricemia. RESULTS: PU administration significantly decreased elevated serum uric acid (SUA) levels in hyperuricemia mice, and effectively alleviated the kidney and intestinal damage caused by hyperuricemia. In the kidney, PU down-regulated the expression of UA resorption protein URAT1 and GLUT9, while up-regulating the expression of UA excretion protein ABCG2 and OAT1 as mediated via the activation of MAKP/NF-κB in hyperuricemia mice. Additionally, PU attenuated renal glycometabolism disorder, which contributed to improving kidney dysfunction and inflammation. Similarly, PU increased UA excretion protein expression via inhibiting MAKP/NF-κB activation in the intestine of hyperuricemia mice. Furthermore, PU restored gut microbiota dysbiosis in hyperuricemia mice. CONCLUSION: This research revealed the ameliorating impacts of PU on hyperuricemia by restoring kidney and intestine damage in hyperuricemia mice, and to be considered for the development of nutraceuticals used as UA-lowering agent.

8.
PNAS Nexus ; 3(4): pgae118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38595803

RESUMO

Enzymatic humification plays a crucial biogeochemical role in eliminating steroidal estrogens and expanding organic carbon stocks. Estrogenic contaminants in agroecosystems can be taken up and acropetally translocated by crops, but the roles of laccase-triggered rhizospheric humification (L-TRH) in pollutant dissipation and plant uptake remain poorly understood. In this study, the laccase-induced decontamination and humification mechanisms of 17ß-estradiol (E2) in water-crop media were investigated by performing greenhouse pot experiments with maize seedlings (Zea mays L.). The results demonstrated that L-TRH effectively dissipated E2 in the rhizosphere solution and achieved the kinetic constants of E2 dissipation at 10 and 50 µM by 8.05 and 2.75 times as much as the treatments without laccase addition, respectively. The copolymerization of E2 and root exudates (i.e. phenols and amino acids) consolidated by L-TRH produced a larger amount of humified precipitates with the richly functional carbon architectures. The growth parameters and photosynthetic pigment levels of maize seedlings were greatly impeded after a 120-h exposure to 50 µM E2, but L-TRH motivated the detoxication process and thus mitigated the phytotoxicity and bioavailability of E2. The tested E2 contents in the maize tissues initially increased sharply with the cultivation time but decreased steadily. Compared with the treatment without laccase addition, the uptake and accumulation of E2 in the maize tissues were obviously diminished by L-TRH. E2 oligomers such as dimer, trimer, and tetramer recognized in the rhizosphere solution were also detected in the root tissues but not in the shoots, demonstrating that the acropetal translocation of E2 oligomers was interrupted. These results highlight a promising strategy for decontaminating estrogenic pollutants, boosting rhizospheric humification, and realizing low-carbon emissions, which would be beneficial for agroenvironmental bioremediation and sustainability.

9.
Nat Commun ; 15(1): 2327, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485966

RESUMO

Polymerization-driven removal of pollutants in advanced oxidation processes (AOPs) offers a sustainable way for the simultaneous achievement of contamination abatement and resource recovery, supporting a low-carbon water purification approach. However, regulating such a process remains a great challenge due to the insufficient microscopic understanding of electronic structure-dependent reaction mechanisms. Herein, this work probes the origin of catalytic pollutant polymerization using a series of transition metal (Cu, Ni, Co, and Fe) single-atom catalysts and identifies the d-band center of active site as the key driver for polymerization transfer of pollutants. The high-valent metal-oxo species, produced via peroxymonosulfate activation, are found to trigger the pollutant removal via polymerization transfer. Phenoxyl radicals, identified by the innovative spin-trapping and quenching approaches, act as the key intermediate in the polymerization reactions. More importantly, the oxidation capacity of high-valent metal-oxo species can be facilely tuned by regulating their binding strength for peroxymonosulfate through d-band center modulation. A 100% polymerization transfer ratio is achieved by lowering the d-band center. This work presents a paradigm to dynamically modulate the electronic structure of high-valent metal-oxo species and optimize pollutant removal from wastewater via polymerization.

10.
J Affect Disord ; 354: 302-308, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479502

RESUMO

BACKGROUND: Parenting stress has long been proposed as a major risk factor for child maltreatment. However, there is a lack of evidence from existing studies on the temporal sequence to establish a causal relationship. This study aims to examine bidirectional temporal relationships between parenting stress and child maltreatment. METHODS: Longitudinal data from two different sources were analysed: a pre-post study of an online parenting programme conducted across six countries - the ePLH Evaluation Study, and a prospective cohort study in the United States - LONGSCAN. Cross-lagged panel model on parenting stress and child maltreatment was used in each dataset. RESULTS: Based on repeatedly measured data of 484 caregivers in the ePLH study across five time points (every two weeks), we found that parenting stress at an earlier time point predicted later child maltreatment (IRR = 1.14, 95 % CI: 1.10,1.18). In addition, the occurrence of child maltreatment was associated with higher subsequent short-term parenting stress (IRR = 1.04, 95 % CI: 1.01,1.08) and thus could form a vicious circle. In the LONGSCAN analysis with 772 caregivers who were followed up from child age of 6 to child age of 16, we also found parenting stress at an earlier time point predicted later child maltreatment (ß = 0.11, 95 % CI: 0.01,0.20), but did not observe an association between child maltreatment and subsequent long-term parenting stress. LIMITATIONS: Potential information bias on the measurements. CONCLUSIONS: This study provides evidence for a bidirectional temporal relationship between parenting stress and child maltreatment, which should be considered in parenting intervention programmes.


Assuntos
Maus-Tratos Infantis , Poder Familiar , Criança , Humanos , Estudos Prospectivos , Cuidadores
11.
Clin Genet ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38544467

RESUMO

We summarize the copy number variations (CNVs) and phenotype spectrum of infantile epileptic spasms syndrome (IESS) in a Chinese cohort. The CNVs were identified by genomic copy number variation sequencing. The CNVs and clinical data were analyzed. 74 IESS children with CNVs were enrolled. 35 kinds of CNVs were identified. There were 11 deletions and 5 duplications not reported previously in IESS, including 2 CNVs not reported in epilepsy. 87.8% were de novo, 9.5% were inherited from mother and 2.7% from father. Mosaicism occurred in one patient with Xq21.31q25 duplication. 16.2% (12/74) were 1p36 deletion, and 20.3% (15/74) were 15q11-q13 duplication. The age of seizure onset ranged from 17 days to 24 months. Seizure types included epileptic spasms, focal seizures, tonic seizures, and myoclonic seizures. All patients displayed developmental delay. Additional features included craniofacial anomaly, microcephaly, congenital heart defects, and hemangioma. 29.7% of patients were seizure-free for more than 12 months, and 70.3% still had seizures after trying 2 or more anti-seizure medications. In conclusion, CNVs is a prominent etiology of IESS. 1p36 deletion and 15q duplication occurred most frequently. CNV detection should be performed in patients with IESS of unknown causes, especially in children with craniofacial anomalies and microcephaly.

12.
ACS Omega ; 9(10): 11925-11941, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496984

RESUMO

Despite the previous preparation of aconine hydrochloride monohydrate (AHM), accurate determination of the crystal's composition was hindered by severely disordered water molecules within the crystal. In this study, we successfully prepared a new dihydrate form of the aconine hydrochloride [C25H42NO9+Cl-·2(H2O), aconine hydrochloride dihydrate (AHD)] and accurately refined all water molecules within the AHD crystal. Our objective is to elucidate both water-chloride and water-water interactions in the AHD crystal. The crystal structure of AHD was determined at 136 K using X-ray diffraction and a multipolar atom model was constructed by transferring charge-density parameters to explore the topological features of key short contacts. By comparing the crystal structures of dihydrate and monohydrate forms, we have observed that both AHD and AHM exhibit identical aconine cations, except for variations in the number of water molecules present. In the AHD crystal, chloride anions and water molecules serve as pivotal connecting hubs to establish three-dimensional hydrogen bonding networks and one-dimensional hydrogen bonding chain; both water-chloride and water-water interactions assemble supramolecular architectures. The crystal packing of AHD exhibits a complete reversal in the stacking order compared to AHM, thereby emphasizing distinct disparities between them. Hirshfeld surface analysis reveals that H···Cl- and H···O contacts play a significant role in constructing the hydrogen bonding network and chain within these supramolecular architectures. Furthermore, topological analysis and electrostatic interaction energy confirm that both water-chloride and water-water interactions stabilize supramolecular architectures through electrostatic attraction facilitated by H···Cl- and H···O contacts. Importantly, these findings are strongly supported by the existing literature evidence. Consequently, navigating these water-chloride and water-water interactions is imperative for ensuring storage and safe processing of this pharmaceutical compound.

13.
Chin J Integr Med ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532154

RESUMO

As ethnic medicine, the whole grass of plants in Cirsium was used as antimicrobial. This review focuses on the antimicrobial activity of plants in Cirsium, including antimicrobial components, against different types of microbes and bacteriostatic mechanism. The results showed that the main antimicrobial activity components in Cirsium plants were flavonoids, triterpenoids and phenolic acids, and the antimicrobial ability varied according to the species and the content of chemicals. Among them, phenolic acids showed a strong antibacterial ability against Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococcus faecium. The antibacterial mechanisms include: (1) damaging the cell membrane, cell walls, mitochondria and nucleus of bacteria; (2) inhibiting the synthesis of proteins and nucleic acids; (3) suppressing the synthesis of enzymes for tricarboxylic acid cycle pathways and glycolysis, and then killing the bacteria via inhibition of energy production. Totally, most research results on antimicrobial activity of Cirsium plants are reported based on in vitro assays. The evidence from clinical data and comprehensive evaluation are needed.

14.
Mater Horiz ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533828

RESUMO

The intricate correlation between lattice geometry, topological behavior and charge degrees of freedom plays a key role in determining the physical and chemical properties of a quantum-magnetic system. Herein, we investigate the introduction of the unusual oxidation state as an alternative pathway to modulate the magnetic ground state in the well-known S = 1 Haldane system nickelate Y2BaNiO5 (YBNO). YBNO is topologically reduced to incorporate d9-Ni+ (S = 1/2) in the one-dimensional Haldane chain system. The random distribution of Ni+ for the first time results in the emergence of a one-dimensional ferromagnetic phase with a transition temperature far above room temperature. Theoretical calculations reveal that the antiferromagnetic interplay can evolve into ferromagnetic interactions with the presence of oxygen vacancies, which promotes the formation of ferromagnetic order within one-dimensional nickel chains. The unusual electronic instabilities in the nickel-based Haldane system may offer new possibilities towards unconventional physical and chemical properties from quantum interactions.

15.
Adv Mater ; : e2401004, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520181

RESUMO

Photocatalytic reduction of CO2 into syngas is a promising way to tackle the energy and environmental challenges; however, it remains a challenge to achieve reaction decoupling of CO2 reduction and water splitting. Therefore, efficient production of syngas with a suitable CO/H2 ratio for Fischer-Tropsch synthesis can hardly be achieved. Herein, bipolaronic motifs including Co(II)-pyridine N motifs and Co(II)-imine N motifs are rationally designed into a crystalline imine-linked 1,10-phenanthroline-5,6-dione-based covalent organic framework (bp-Co-COF) with a triazine core. These featured structures with spatially separated active sites exhibit efficient photocatalytic performance toward CO2-to-syngas conversion with a suitable CO/H2 ratio (1:1-1:3). The bipolaronic motifs enable a highly separated electron-hole state, whereby the Co(II)-pyridine N motifs tend to be the active sites for CO2 activation and accelerate the hydrogenation to form *COOH intermediates; whilst, the Co(II)-imine N motifs increase surface hydrophilicity for H2 evolution. The photocatalytic reductions of CO2 and H2O thus decouple and proceed via a concerted way on the bipolaronic motifs of bp-Co-COF. The optimal bp-Co-COF photocatalyst achieves a high syngas evolution rate of 15.8 mmol g-1 h-1 with CO/H2 ratio of 1:2, outperforming previously reported COF-based photocatalysts.

16.
J Ethnopharmacol ; 327: 117983, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38432578

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ding-Chuan-Tang (Abbreviated as DCT) is frequently prescribed for treatment of respiratory diseases, including chronic obstructive pulmonary disease (COPD), which is characterized by coughing, wheezing, and chest tightness in traditional Chinese medicine (TCM). However, the potential mechanism of DCT has not been investigated. AIM OF STUDY: The aim of the study is to explore the efficiency of DCT in the treatment of COPD in vivo and in vitro, and to illustrate the possible mechanism against COPD. METHODS: COPD model was induced by exposure of mice to cigarette smoke (CS) for 16 weeks. Enzyme-linked immunosorbent assay (ELISA), immunofluorescence assay, Western blot, etc., were used to explore the efficiency and mechanisms of DCT. Network pharmacology analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, etc., was performed to explore the potential targets in the treatment of DCT on COPD. RESULTS: DCT significantly alleviated pulmonary pathological changes in mouse COPD model, and inhibited inflammatory response induced by CS and LPS in vivo and in vitro. Network pharmacology analysis suggested that DCT alleviated COPD via inhibiting inflammation by regulating PI3K-AKT pathway. In cell-based models, DCT suppressed the phosphorylation of PI3K and AKT, which further regulated its downstream targets Nrf2 and NF-κB, and inhibited inflammatory response. CONCLUSIONS: DCT effectively attenuated COPD in the mouse model induced by CS. The therapeutic mechanism of DCT against COPD was closely associated with the regulation of PI3K-AKT pathway and its downstream transcription factors, Nrf2 and NF-κB.


Assuntos
NF-kappa B , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Farmacologia em Rede , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo
17.
J Agric Food Chem ; 72(9): 5036-5046, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377548

RESUMO

OfChtI and OfChi-h are considered potential targets for the control of Asian corn borer (Ostrinia furnacalis). In this work, the previously reported OfChtI inhibitor 5f was found to show certain inhibitory activity against OfChi-h (Ki = 5.81 µM). Two series of novel butenolide derivatives based on lead compound 5f were designed with the conjugate skeleton, contributing to the π-binding interaction to chitinase, and then synthesized. Compounds 4a-l and 7a-p displayed excellent inhibitory activities against OfChtI and OfChi-h, respectively, at a concentration of 10 µM. Compound 4h was found to be a good dual-Chitinase inhibitor, with Ki values of 1.82 and 2.00 µM against OfChtI and OfChi-h, respectively. The inhibitory mechanism studies by molecular docking suggested that π-π stacking interactions were crucial to the inhibitory activity of novel butenolide derivatives against two different chitinases. A preliminary bioassay indicated that 4h exhibited certain growth inhibition effects against O. furnacalis. Butenolide-like analogues should be further studied as promising novel dual-chitinase inhibitor candidates for the control of O. furnacalis.


Assuntos
4-Butirolactona/análogos & derivados , Quitinases , Mariposas , Animais , Zea mays , Simulação de Acoplamento Molecular , Quitinases/química , Crescimento e Desenvolvimento
18.
Natl Sci Rev ; 11(3): nwad299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38312383

RESUMO

A digital coding metasurface is a platform connecting the digital space and electromagnetic wave space, and has therefore gained much attention due to its intriguing value in reshaping wireless channels and realizing new communication architectures. Correspondingly, there is an urgent need for electromagnetic information theory that reveals the upper limit of communication capacity and supports the accurate design of metasurface-based communication systems. To this end, we propose a macroscopic model and a statistical model of the digital coding metasurface. The macroscopic model uniformly accommodates both digital and electromagnetic aspects of the meta-atoms and predicts all possible scattered fields of the digital coding metasurface based on a small number of simulations or measurements. Full-wave simulations and experimental results show that the macroscopic model is feasible and accurate. A statistical model is further proposed to correlate the mutual coupling between meta-atoms with covariance and to calculate the entropy of the equivalent currents of digital coding metasurface. These two models can help reconfigurable intelligent surfaces achieve more accurate beamforming and channel estimation, and thus improve signal power and coverage. Moreover, the models will encourage the creation of a precoding codebook in metasurface-based direct digital modulation systems, with the aim of approaching the upper limit of channel capacity. With these two models, the concepts of current space and current entropy, as well as the analysis of information loss from the coding space to wave space, is established for the first time, helping to bridge the gap between the digital world and the physical world, and advancing developments of electromagnetic information theory and new-architecture wireless systems.

19.
Angew Chem Int Ed Engl ; 63(15): e202320218, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38353181

RESUMO

The development of photocatalysts with continuous electron extraction and rapid proton transfer could kinetically accelerate the artificial photosynthesis, but remains a challenge. Herein, we report the topology-guided synthesis of a high-crystalline triazine covalent organic framework (COF) decorated by uniformly distributed polar oxygen functional groups (sulfonic group or carboxyl) as the strong electron/proton extractor for efficient photocatalytic H2O2 production. It was found that the polarity-based proton transfer as well as electron enrichment in as-obtained COFs played a crucial role in improving the H2O2 photosynthesis efficiency (i.e., with an activity order of sulfonic acid- (SO3H-COF)>carboxyl- (COOH-COF)>hydrogen- (H-COF) functionalized COFs). The strong polar sulfonic acid group in the high-crystalline SO3H-COF triggered a well-oriented built-in electric field and more hydrophilic surface, which serves as an efficient carrier extractor enabling a continuous transportation of the photogenerated electrons and interfacial proton to the active sites (i.e., C atoms linked to -SO3H group). As-accelerated proton-coupled electron transfer (PCET), together with the stabilized O2 adsorption finally leads to the highest H2O2 production rate of 4971 µmol g-1 h-1 under visible light irradiation. Meanwhile, a quantum yield of 15 % at 400 nm is obtained, superior to most reported COF-based photocatalysts.

20.
Int J Biol Macromol ; 262(Pt 2): 130027, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340941

RESUMO

In this study, three acidic polysaccharides (OFPP-1, OFPP-2 and OFPP-3) were isolated from the pulps of Opuntia dillenii Haw. fruits, and their chain conformations, physicochemical and rheological properties were investigated. The molecular weight and conformational parameters (Mw, Mn, Mz, Rg and Rh) of OFPPs in 0.1 M NaNO3 solution were detected by HPSEC-MALLS-RI. In addition, based on the parameters ρ and v, it was concluded that these three polysaccharide chains exhibited sphere-like conformation in 0.1 M NaNO3 solution, which was consistent with AFM and TEM observations. Furthermore, the Congo Red experiment showed that OFPP-2 had a triple-helix structure, which may be conducive to its biological activity. This study also found that OFPPs were semi-crystalline structures with high thermal and pH stability. The rheological analyses indicated that the apparent viscosity of OFPPs solutions exhibited concentration-, temperature-, and pH-dependence, and the viscoelasticity of them was affected by molecular characteristics and concentration. The results of this study are helpful to elucidate the structure-activity relationship of OFPPs. Moreover, this study can provide theoretical reference for the application of OFPPs as bioactive ingredients or functional materials in the food, pharmaceutical and cosmetic industries and the development and utilization of the O. dillenii Haw. fruits resource.


Assuntos
Opuntia , Opuntia/química , Frutas/química , Polissacarídeos/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...